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Perturbations of noise: Origins of isothermal flows
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~Received 21 September 1998!

We perform a detailed analysis of both the phenomenological and analytic backgrounds for the ‘‘Brownian
recoil principle’’ hypothesis@Phys. Rev. A46, 4634~1992!#. A corresponding theory of the isothermal Brown-
ian motion of particle ensembles~Smoluchowski diffusion process approximation! takes into account the
environmental recoil effects due to locally induced tiny heat flows. By means of local expectation values we
elevate the individually negligible phenomena to a non-negligible~accumulated! recoil effect on the ensemble
average. The main technical input is a consequent exploitation of the Hamilton-Jacobi equation as a natural
substitute for the local momentum conservation law. Together with the continuity equation~alternatively,
Fokker-Planck!, it forms a closed system of partial differential equations that uniquely determines an associ-
ated Markovian diffusion process. The third Newton law in the mean is utilized to generate diffusion-type
processes that are either anomalous~enhanced! or generically nondispersive.@S1063-651X~99!09002-9#

PACS number~s!: 02.50.2r, 05.40.2a, 03.65.2w
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I. SMOLUCHOWSKI DIFFUSION PROCESSES,
STOKES RESISTANCE, AND WEAKLY

OUT-OF-EQUILIBRIUM SYSTEMS

A. Traditional phenomenology

In random media that are statistically at rest, motion
single tracers or dispersion of pollutants, also in the prese
of external conservative force fields, may be consistently
scribed in terms of Smoluchowski diffusion processes@1,2#.
Their forward drifts are interpreted to take into account

mean velocityb21FW /m imparted by the external conserv
tive force to diffusing particles, an outcome of the accele

tion FW /m ‘‘felt’’ and accumulated on the relaxation tim
scaleb21. This time scale is regarded to be much finer th
the one appropriate for the coarse-grained description.
latter, Dt@b21, is still significantly smaller than the avail
able phenomenological~observational! resolution.

Our basic intuitions are rooted in the theory of a Brow
ian motion suitable for the description of colloidal particl
floating in a liquid. However, the issue of particular ‘‘caus
of diffusion’’ is not that relevant, and the proper arena for t
Brownian motion can be not only a viscous fluid, or a dilu
gas, but any interacting many-particle system and even
specific random medium with a suitable microscopic beh
ior. The problem of ‘‘how to make a heat bath’’ needs to
addressed@2–4#. In the present paper we take for granted t
validity ~even if diminished to the status of an approxima
theory or the conceptual playground! of the standard Kram-
ers and Smoluchowski diffusion process scenarios, as
reference mathematical models of random transport in
equilibrium bath.

If we consider a fluid in thermal equilibrium as the noi
carrier, a kinetic theory viewpoint amounts to visualizing t
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constituent molecules that collide not only with each oth
but also with the tagged~colloidal! particle, soenforcingits
observed erratic motion. Clearly, random molecular co
sions both initiate and maintain an incessant irregular mo
of the tagged particle. Once the particle is in motion,
need to account for an additional statistical effect of mole
lar impacts on the actuallymovingparticle. It is phenomeno-
logically encoded in the Stokes resistance, coming from
eraging over a molecular ‘‘rain’’ along some portion of th
trajectory, which is proportional to the velocity of the pa
ticle. In the phase-space description, the particle velo

VW (t)5vW is a random quantity. The damping effect isnot
random. It stands for a statistically accumulated, passive
sponse of the medium. Indeed~see, e.g., Sec. II A!,#

2vW /b21 locally averages the genuine~ignoring fine-
detailed! random dynamics on the relaxation time scaleb21.

For a bath in equilibrium, the internal relationship b
tween the above random and systematic~due to friction! ef-
fects of a generic noise on the Brownian particle motion
the subject of fluctuation-dissipation theorems. This exte
to situations when the external driving forces additiona
modify the particle dynamics, but do not modify the statist
of noise. This feature is generic to Smoluchowski diffusio
~Conventionally, the fluctuation-dissipation theorems are
terpreted@5# to set a general relationship between the
sponse of diffusing particles in an equilibrium bath to
external force and the internal fluctuation of the bath in
absence of this disturbance.!

By means of Einstein’s fluctuation-dissipation theore
we are given the diffusion coefficientD5kT/mb. It charac-
terizes an intensity of the spatial~Wiener! noise in terms of
the friction parameterb, with k the Boltzmann constant,T
the equilibrium temperature of the bath, andm the mass of a
diffusing particle @1#. A formal exploitation of the Stokes
formula ~derivable on the basis of pure kinetic argumen
from the Boltzmann theory@6#! transfers to the Brownian
realm a concept of a frictional deceleration, originally suit
to a macroscopic spherical particle of radiusa and massm

pl.
1498 ©1999 The American Physical Society



e-
on
e
th

a
es
e.
ity
w

th
tic
o
ti

u
ua

a
ei
c

ra

e
ac
.
om

ic

n
v

e-

of
-

-

e

n-

ble

ths

ra-

Eq.

ical
to a
d

ic
id

r
r a
ss

re-
id-

rnal

t-
n-
ed
f

e
-

t

rge
ise
le

ils

s that

PRE 59 1499PERTURBATIONS OF NOISE: ORIGINS OF . . .
moving in a fluid with viscosity coefficienth. In the new
context, it is themeanproperty of motion andnot a particu-
lar single Brownian particle-in-motion attribute. Noneth
less, that allows us to establish the value of the friction c
stant b56pha/m, the result amenable to positiv
experimental verifications in the classic studies of
Brownian motion@1,7#.

B. Meaning of stochastic models

An observable Brownian motion of colloidal particles in
fluid @1,7#, when interpreted in terms of random process
involves a number of mathematical subtleties, such as,
an inherent nondifferentiability of sample paths in veloc
space that reappears on the spatial arena of Smolucho
processes as well.

Clearly, the phase-space stochastic process is a ra
crude approximation of reality, if compared with the kine
theory reasoning based on the explicit input of particle c
lisions to the Boltzmann equation and the related kine
theory of hydrodynamic flows@6#. The Boltzmann equation
can be interpreted in terms of a jump Markov process sim
lating collision events, and the diffusion-type Kramers eq
tion may arise only in a suitable scaling limit@8#. This limit
can be justified in the case of grazing collisions, or as a w
to include the effect of long range forces by treating th
influence in a statistical way: they should generally produ
a sequence of small and almost random changes in the t
particle velocity@3#.

The Smoluchowskiapproximationtakes us further away
from the kinetic theory intuitions by projecting the phas
space theory of random motions into its configuration sp
image@9#, which is a spatial Markovian diffusion process

To quantify the above picture one usually departs fr
the phase-space~Langevin and Kramers! description of fluc-
tuation phenomena. Let us consider an Itoˆ equation~in its
symbolic differential version! for infinitesimal increments of
the velocity random variable, exhibiting the systematic fr
tional resistance

dVW ~ t !52bVW ~ t !dt1bA2DdWW ~ t !, ~1!

whereWW (t) stands for the normalized Wiener process. O
can easily infer@10# the corresponding second Kolmogoro
~Fokker-Planck! equation

] tp~vW 0 ,vW ,t !5bDDvW1b¹W vW•@vW p~vW 0 ,vW ,t !# ~2!

for the transition probability density of the time homog
neous process in the velocity space alone@10,2#.

In view of

p~vW 0 ,vW ,t !5S m

2pkT~12e22bt!
D 3/2

3expH m

2kT

~vW 2vW 0e2bt!2

12e2bt J , ~3!

the time intervalb21 effectively accounts for an approach
the transition density to the equilibrium Maxwell distribu
tion.
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Let us consider an instantaneous velocityVW (t)5vW that
has been achieved in the course of the random evolution~1!

beginning from a certainVW (0)5vW 0 . We can evaluate a con
ditional expectation value@local mean with respect to the law
of random displacements~3!# over all randomly accessible
velocities VW (t1Dt)5vW 8 at a time t1Dt,Dt.0. It deter-
mines the forward drift of the process:

bW ~vW ,t !5 lim
Dt↓0

S E vW 8p~vW ,vW 8,Dt !d3v82vW D52bvW ~4!

and thus@2,11,12# provides us with information about th
mean tendencyof the dynamics on small~but not too small if
compared tob21) time scales. Evidently, that mean te
dency in the case of Eq.~1! is to decelerate the velocityvW at
the Stokes ratevW /b21.

Sample paths of the Wiener process are nondifferentia
and play the role of~velocity space! idealizations of ‘‘true’’
trajectories. We need a conditional averaging over all pa
emanating fromvW 5VW (t) to bypass, cf. Eq.~4!, the nondif-
ferentiability problem and then introduce the local decele
tion rate (vW→vW 2bvW Dt) @2#. Clearly, the friction term and
thus the deceleration concept, in the framework set by
~1!, arise as statistical,local mean value, quantities. All that
must be sharply contrasted with the standard hydrodynam
meaning of the Stokes resistance formula, which refers
genuine ~the reduced Navier-Stokes equation is involve!
fluid velocity field around asingle uniformly propagating
particle. It is the perturbation by the moving macroscop
body that gives rise to the force with which the viscous flu
acts upon the concrete particlelike object.

Quite apart from the time-scale (Dt versusb21) issue, an
individual Brownian particle neither moves uniformly, no
everpermanently relaxes to the state of rest. Actually, fo
single Brownian particle, the respective velocity gain/lo
~acceleration/deceleration rate! on the b21 time scaleis a
random quantity.

Conversely, the standard interpretation of the Stokes
sistance for a large particle in a viscous fluid makes unavo
able an ultimate stopping of the particle, unless an exte
force would balance the damping and so maintain the~uni-
form! particle motion at a certain terminal velocity. This la
ter concept forms the basis of the Einstein fluctuatio
dissipation formula in the case of the gravitationally induc
sedimentation phenomenon, cf.@1#, although in the case o
the Brownian motion only local mean velocity fields~hence,
ensemble averages! can be employed for that purpose. Th
picture of ‘‘a Brownian particle moving at its terminal ve
locity’’ @13# is certainly inappropriate.

We can supplement Eq.~1! with the spatial incremen
definition: dXW (t)5VW (t)dt, extending Eq.~1! to the phase-
space process whose Smoluchowski projection in the la
damping regime reduces to the pure spatial Wiener no
dXW (t)5A2DdWW (t). In this case, the generic spatial sca
~wandering distance over which the dissipation processin
the meanis completed! is set by (Db21)1/2. The Smolu-
chowski approximation amounts to ignoring the fine deta
of the dynamics on theb21 and (Db21)1/2 scales. One dis-
regards all possible remnants of the phase-space proces
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1500 PRE 59PIOTR GARBACZEWSKI
extend beyond those scales@the damping typically induces
exp(2bt) factors in all relevant formulas, hence a certa
amount of ‘‘memory’’ must be eliminated to yield a Marko
process# @1#.

That particulardisregard/ignoreissue is worth emphasiz
ing in the context of typical approximate~analytic or numeri-
cal! manipulations with the Brownian motion. A strong s
lution of Eq. ~1! @we takeVW (0)5vW 0 as the initial condition#
has the form

VW ~ t !5vW 0 exp~2bt !1E
0

t

exp@2b~ t2s!#bA2DdWW ~s!.

~5!

This expression, albeit looking physically unrealistic, is
fairly accurate approximation of a phenomenological m
lecular collision scenario for the Brownian motion. Name
let us introduce a finite Riemann sum approximation of
integral in Eq.~5!:

E
0

t

exp@2~ t2s!#bA2DdWW ~s!

'exp~2bt !(
n

exp~bnDt !DVW n , ~6!

whereDVW n5bA2DDWW (nDt) stands for thenth consecutive
velocity increment, e.g., an effect of all ‘‘random accele
tion’’ events taking place in the time interval„nDt,(n
11)Dt…. If we resort to a molecular collision mechanism~in
a dilute gas for example!, the velocity increments due t
collisions of the Brownian particle with molecules of th
bath can be viewed as statistically independent, and occ
an approximate rate of 10221 per second. The collisions ma
be interpreted to occur consecutively one after another,
multiple collision events are allowed as well. If we rega
the coarse graining time in Eq.~6! as referring to a typica
relaxation timeb21'1028 s, ~notice that the respectiv
coarse graining appropriate for the Smoluchowski appro
mation would involveDt@b21), it is obvious that eachnth
velocity increment can be interpreted as a sum of an e
mous number of independent identically distributed rand
variables ~minute acceleration/deceleration, e.g., collisi
events!. Let us stress that we exploit here a defining prope
of the Wiener process; the velocity random variable~5! of
the Ornstein-Uhlenbeck process~1!–~3! is known not to
have independent random increments@10#.

The accumulated fluctuation irregularities, on theb21

time scale, are the primary reason for the erratic behavio
the Brownian motion in the velocity space. Thus an integ
tion with respect to the normalized Wiener processWW (t) in
Eq. ~5! quite satisfactorily~in a suitable scaling limit! models
a cumulativeoutcome of phenomenologically motivated im
pulses~kicks exerted by the noise carrier! on the Brownian
particle.

Let us emphasize at this point@2# that it is not correct to
think that conspicuous jiggles in the Brownian trajectory a
due tosingle kicks. ~In mathematical terms the situation
even worse, since the Wiener process has an unbou
variation at arbitrary time intervals.! The realistic Brownian
motion is unbelievably gentle, specifically if we refer to
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heavy particle immersed in a gas of much lighter ones. E
collision ~kick! has an entirely negligible effect on the velo
ity of the Brownian particle. It is only fluctuations in th
accumulation of an enormous number of very slight chan
in the particle velocity which give the trajectory its irregul
appearence, in both velocity and position pictorial repres
tations of motion. Consequently, Eq.~5! makes sense as
useful approximation of physical phenomena, if the coar
grained time scaleDt in Eq. ~6! ~which is far below an
observational one! is much larger thanb21, but still small
enough for a sufficiently fine coarse graining~6! of Eq. ~5!.

The previously mentioned space and time scales jus
the utility of the Smoluchowski description of conservati
force effects upon a spatially diffusing particle@2#:

dXW ~ t !5
FW

mb
dt1A2DdWW ~ t !. ~7!

The Smoluchowski forward drift can be traced back to
presumed selective action of the force on the Brownian p
ticle that has a negligible effect on the thermal bath. Inde
we take for granted that there is no physically relevant m
~induced! flow in the bath proper, unless the isothermal
assumption is abandoned@13,14#, or other hitherto disre-
garded effects on theb21 scale~such as those due to th
action-reaction principle@11#! are incorporated into the for
malism.

Brownian particles appear to be driftingon the local av-
eragerelative to the bath, with a uniform~but in the mean!
velocity FW /mb. Clearly, a repeated series of observations
regularly spaced time intervals, of asingle tagged Brownian
particle would not in general reveal any specific motion te
dency. The graphical picture of motion would be as irregu
as ever~‘‘no purpose’’ sample paths of the Wiener proces
as in the absence of any force!. The respective coarse
grained approximation of the trajectory does correspond
an experimental resolution, which is incomparably rough
than the previous time scales.

Only a numerical simulation of the statistical ensemble
sample paths with a controlled probability distribution~fre-
quency, in fact! of initial conditions, or a realistic monitoring
of the Brownian motion-induced dispersion of a low dens
cloud of dust particles suspended in a liquid, would lend
definite meaning to the ‘‘motion tendency’’ concept and
the related mean Brownian flows. Realistic diffusion pr
cesses~and diffusive transport! are observed in the case o
nonuniform concentrations of colloidal particles but they a
regarded as being a result of random migration of individ
particles which is actually observable~under a microscope!
and interpreted as the Brownian motion.

In the context of a sedimentation phenomenon, a su
ciently long overall observation time of a single tagged p
ticle traveling along its erratic path~hours or days in a real o
computer simulation experiment!, would presumably revea
that a particle more frequently visits certain spatial areas
accordance with the barometric formula~ergodic features of
motion!. Early experiments on this issue@1,7# pertained to a
cloud of suspended particles executing an extremely s
~practically adiabatic! diffusion process. In some cases, t
spatial displacement of the size 0.231026 m tracer particles
has been measured in 30 s time intervals@7,1# to yield the
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PRE 59 1501PERTURBATIONS OF NOISE: ORIGINS OF . . .
observationally relevant outcomes. Very recent observat
of an individual Brownian particle motion refer to~1–2.5)
31026 m tracers and the1

60 s time resolution.

C. Problems with thermal equilibrium

A spectacular solution of the sedimentation problem d
to Smoluchowski refers to the isothermal dynamics~1!
which is constrained to the positive vertical semiax
dZ(t)52bcdt1bA2DdW(t), with a reflecting boundary
at the spatial point 0. The transition probability density
this one-dimensional process reads@1,10#

p~z,z0 ,t !5
1

2~pDt !1/2$exp@2~z2z0!2/4Dt#

1exp@2~z1z0!2/4Dt#%1
c

DAp

3exp~2cz/D !E
~z1z02ct!/2~Dt !1/2

`

3exp~2x2!dx ~8!

and shows that a particle starting its motion from any po
tive z0 near 0 may wander along the positive semiaxis
definitely. In particular, it can be transported against
gravitational force to an arbitrary height. Depending on
actualz0 the Brownian particle may have a higher probab
ity of ascending than descending.

The correspondingmean workhas been evaluated to b
kT per particle, cf.@1,10# for a related discussion of th
entropy decrease issue. Certainly, the ability of the med
to perform work~in the mean!, i.e., to give a kinetic energy
to the Brownian particle~on the ensemble average again!, is
not unique to the sedimentation problem. It appears to b
universal feature of the thermal bath even in the absenc
any external forces.

In the equilibrium situation@ t→`⇒p(z,z0 ,t)→r(z)#
we would arrive at the familiar balance condition: the me
tendency of motion~forward drift! due to gravitational accel
eration must be exactly balanced by the oppositely direc
motion tendency of the diffusive~osmotic pressure@1,2#!
origin, valid for nonuniform concentrations of a contamina
in a solvent. The latter tendency involves sending partic
away from the areas of higher probability of their presen
~concentration, if a low density pollutant is considered! in
accordance with the Fick formula for the diffusion curre
2c52D¹r(z)/r(z). The barometric formula does follow

It is interesting to spend a while on some tagged~single!
particle features in the nonequilibrium—but isothermal
regime admitted by Eq.~8! for not too large times, when th
Einstein~mean! balance condition is still invalid. Clearly, to
have defined an analog of the Fick diffusion flow, a pro
ability density of initial dataz0 must be chosen. In a com
puter simulation we would have under control a bunch
relevant sample paths~all consecutively executed on a fixe
duration time interval@0,t#) and the related probability den
sity evolution along the bunch. Depending on the initial d
distribution, for a time period the osmotic drift would dom
nate the gravitationally induced drift. To this end, work~in
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the mean! must have been done on Brownian particlesat the
expense of the bath. Local conversion of work into hea
seems to be unavoidable, and local heat flows are unav
able as well, cf.@13,7#. That creates a number of problems
which no attention is normally paid in the literature.

Smoluchowski diffusions are conventionally regarded
isothermal processes~possible heat flows are ignored fo
various reasons!. If we, however, admit that the emergin
tiny heat flows may have an effect on the particle transp
due to the Brownian motion, a suitable description of t
thermal inhomogeneities and their effects on the dispers
of Brownian particles must be invented.

For example, in the case of thermally inhomogeneo
gases it is well known that a dust-free region appears abo
hot body, showing that a temperature gradient has an ef
on the motion of dust particles in a gas@16#. Tracer particles
are transported away from the hot areas to the cooler o
~we may interpret that as a repulsion by the heated doma!.
They appear to be attracted by the cooler areas while es
ing from the hot domains. Particles float down the tempe
ture gradients.

Remark 1.Let us mention an approach to a quite simili
problem@13# which was originally formulated for a cloud o
contaminants in a liquid, under the following phenomen
logical assumption: ‘‘a gas of Brownian particles falling
gravity should leave a trail of warm fluid in its wake, sinc
its potential energy is being converted into heat.’’ Obvious
if the particles move against gravitational force, then t
temperature of the medium should drop locally. Those f
tures, if we are to keep track of the local heating and cool
~as opposed to the isothermal Einstein or Smoluchowski
fusive dynamics! were interpreted as a source of the spa
time dependence of temperature. The Fokker-Planck eq
tion must then be supplemented by an evolution equation
the temperature field~a clear-cut kinetic theory reasoning ca
be read in this strategy!, so that the coupled nonlinear syste
would take the form of a ‘‘consistent thermodynamical sy
tem’’ i.e., the one manifestly respecting the first and seco
laws of thermodynamics; see, e.g., Ref.@14#. Here, the heat
flows are assumed to be neither slow nor fast enough to
effectively disregarded.

Remark 2.An issue of suitable slow and fast process tim
scales is crucial in our discussion. One should be aware
local temperature perturbations of the bath may be sa
neglected when the dissipation~fast process! time scale and
the diffusion~observational for tagged particles! time scales
are generically incompatible, such as, e.g., in the case
rapid dissipation set against a slow diffusion process. Th
the usual isothermal diffusion process follows and the st
dard Brownian motion paradigm is left intact.

In the discussion of the Carnot principle, in reference
the free Brownian motion and to the sedimentation probl
@1,7#, Brownian particle fluctuations are regarded to occ
due to causes that are intrinsic to the random medium. If
think about minute acceleration/deceleration events
modify ~say, at a rate of 1021 times per second! velocities of
realistic particles, the microscopic energy-momentum c
servation laws need to be respected in each separate coll
event. In contrast to derivations based on the Boltzmann
llision scenario, this feature is completelyalien to the
Brownian motion theory, cf.@11,12#. ~This happens quite
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apart from the elusive power of the flutuation-dissipati
mechanism@5#: ‘‘The friction, or more generally the resis
tance of a given system, represents the method by which
external work is dissipated into microscopic thermal ener
The reverse process is the generation of random force a
result of thermal fluctuation.’’!

Let us point out that the phenomenology allowing us
regard Eq.~1! as a satisfactory model for Brownian partic
velocity fluctuations blurs possible advantages of the clos
related argument appearing in the diffusion modeling of
Rayleigh piston@17#: ‘‘Collisions between the large particl
~piston! and the bath particles are elastic. After each collis
the bath particles are given a new distribution, which evol
until the next collision.’’

To avoid an apparent contradiction with the law of ener
conservation, it seems tempting to require that each min
acceleration of a Brownian particle be accompanied b
minute cooling of the medium in its immediate neighbo
hood. Correspondingly, any deceleration event should ind
a localheatingof the immediate neighborhood of a particl
see, e.g.,@7#. Since@cf. Eq. ~1!# we always disregard the fin
details of about 1013 collision impacts on the Brownian par
ticle on a typical relaxation time scale of 1028 s, there is
definitely enough room to allow for local statistical measu
of heating and cooling.

Remark 3.The heating, cooling, and temperature notio
are quantitative mean measures of the degree of agitatio
the noise carrier. If the random medium is interpreted on
molecular level to be composed of light particles, these m
sures can be correlated with the mean square deviation o
~bath molecule! velocity random variable, or an average
the squared velocity if its mean value vanishes. Those qu
tities are purely statistical characteristics of the bath andnot
of the Brownian particle immersed in it. Only under restr
tive thermal equilibrium conditions can the notion of tem
perature appropriate to the bath be elevated to the status
measure of thermal agitation for tracer particles.

D. Goals

In the Kramers approach to the phase-space dynamics
stochastic properties of the medium were considered to
independent of random phase-space data of the Brow
particle. The statistics of noise~e.g., the thermal equilibrium
features of the bath! must have remained unperturbed by t
very presence of the particle and its phase-space fluctuat
albeit those areenforcedby the intrinsic randomness of th
bath. One assumes that there is no relevantdynamical re-
sponse of the bath to the very presence of the Brown
particle and its induced dynamics. We recall that t
fluctuation-dissipation theorems merely account for apassive
response, in terms of the statistically implemented Sto
resistance of the bath to the particle in motion.

On the other hand, the above local heating and coo
notions refer to the dynamical response of the bath to
Brownian particle which is immersed in it. We need to a
count for the out-of-equilibrium properties of the bath in t
presence of a single particle, whose motion is solely enfor
by the bath. Thus very weak~although possibly fast! heat
flows should accompany an individual Brownian partic
motion. That conforms with an obvious intuition that n
physical system is ever in thermodynamical equilibrium, a
he
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normally it is necessary to idealize the situation by regard
‘‘fast processes’’ to be completed, while the ‘‘slow’’ one
are still running.

In such a weakly nonequilibrium system with small he
flows, we may expect that the standard equilibrium tempe
ture notion is replaced by aneffective temperature notion
~and an effective thermal equilibrium!, which depends on the
chosen fast-versus-slow-process time scales and the
semble averaging. Repetitions of a single-particle experim
in the same thermal bath should now be replaced by rep
tions of the same experiment with different realizations
the out-of-equilibrium heat bath, cf.@18# for similiar con-
cepts in the context of randomly disordered media.

In the above sense only an effective isothermal regi
may be maintained, since the compensating heat flows a
us to regain the equilibrium temperaturealmost instanta-
neously. After averaging over the tracer particle ensem
and the corresponding~weakly out-of-equilibrium! sample
paths, we should be able to capture possible statistically
evant effects due to temperature inhomogeneities~small de-
viations from thermal equilibrium conditions! and the result-
ant effective flowsin a bath, that are possibly induced~via
back reaction on the time scale probably larger thanb21 but
still much below the Smoluchowski approximation tim
scaleDt) by propagating Brownian particles. All that is t
happen well beyond the limits of an available, cf.@7#, obser-
vational resolution.

We have thus set a phenomenology of a specificdynami-
cal response of the random medium to the Brownian mot
of a singletagged particle, whose sole outcome is the min
deviations from the thermal equilibrium of the fluctuatin
medium itself and the resultant heat flows~needed to restore
the equilibrium!. This is independent of the traditional fric
tional resistance argument, directly referring to the therm
equilibrium conditions and theb21 time scale.

We deal here with a genericfeedback mechanismsce-
nario. The Brownian particle propagates ‘‘at the expense’
the bath, which, however, remains ‘‘close’’ to its therm
equilibrium. The bath in turn activelyreacts backto what is
happening to the particle in the course of its propagati
The instantaneous local deviations from the state of equ
rium ~‘‘perturbation of noise’’! along the trajectory surely
have an effect on each subsequent stage of the particle pr
gation. Even if residual for an individual Brownian partic
and its sample path, the feedback effect is expected to a
mulate statistically~on the ensemble average! to a sizable
quantity. Under the name of the ‘‘Brownian recoil principle
we have made a preliminary study of such random dynam
in Refs.@11,12#.

Remark 4.In connection with Remark 1, let us mentio
that a spatial diffusion~Smoluchowski! approximation of the
phase-space process allows us to reduce the number of
pendent local conservation laws~cf. @15,19,20#! to just two.
Therefore, the Fokker-Planck~or continuity! equation can
always be supplemented by another~independent! partial dif-
ferential equation to form a closed system. Nonisotherm
flow description needs to accommodate the variations
temperature of the bath~cf. @13,14#!, while we investigate the
limits of validity of the isothermal scenario. That amounts
inequivalent choices of the supplementary equation. We
phasize a single tagged particle in a bath description i



t
-

e

le
lo
i

a

-o
-

in
il

en
i-
d
-

ud

ns
t

s
w

t
rs

n

.
ns

not

ns
rs

ap-

ic

re-
cf.
n

ni-
’
ts

cal

a-
n

n-

n

to
no

is
r-
ium
uld

es
w in
ted

rim-
n,

p-

PRE 59 1503PERTURBATIONS OF NOISE: ORIGINS OF . . .
repeatable experimentation sequence, under basically
same~or very similiar! physical conditions. In such a situa
tion, a stochastic process executed by a single particl
practically isothermal~‘‘the Brownian motion is unbeliev-
ably gentle’’ @2#!. Each sample path of the Brownian partic
~and the related cooling/heating phenomena induced a
the path! is a random quantity. The state of the medium,
giving account of itsdynamical response~i.e., deviation
from thermal equilibrium! to the Brownian propagation, is
random quantity as well. It is the local mean~related to the
ensemble average over various realizations of out
equilibrium conditions for the bath! that may properly quan
tify this picture.

II. LOCAL CONSERVATION LAWS
FOR THE BROWNIAN MOTION

IN THE SMOLUCHOWSKI APPROXIMATION:
DIFFUSION CURRENTS AND DRIVING FLOWS

Previously, we have identified the forward driftFW /mb,FW

52¹W V as a quantitative measure of a statistical~local! ten-
dency of the Brownian motion, obtained through averag
over an ensemble of sample paths. If we assign a probab
densityr0(xW ) with which the initial dataxW05XW (0) for Eq.
~7! are distributed@weak solutions of Eq.~7! enter the scene#,
then the emergent Fick law would reveal a statistical t
dency of particles to flow away from higher probability res
dence areas. This feature is encoded in the correspon
Fokker-Planck equation~equivalently, a continuity equa
tion!:

] tr52¹W •~vW r!52¹W •F S FW

mb
2D

¹W r

r
D rG , ~9!

where a diffusion current velocity isvW (xW ,t)5bW (xW ,t)
2D¹W r(xW ,t)/r(xW ,t) while the forward drift readsbW (xW ,t)
5FW /mb, cf. Eq. ~7!. Clearly, the local diffusion current~a
local flow that might be experimentally observed for a clo
of suspended particles in a liquid! jW5vW r is nonzero in the
nonequilibrium situation and a non-negligible matter tra
port occurs as a consequence of the Brownian motion, on
ensemble average.

It is interesting to note that the local velocity fieldvW (xW ,t)
obeys the natural~local! conservation law, which we quite
intentionally pattern after the moment identities~hierarchy of
conservation laws! valid for the Boltzmann and Kramer
equations@9,15#. The pertinent momentum conservation la
directly originates from the rules of the Itoˆ calculus for Mar-
kovian diffusion processes@2#, and from the first momen
equation in the diffusion approximation of the Krame
theory @9,15#:

] tvW 1~vW •¹W !vW 5¹W ~V2Q!. ~10!

An effective potential functionV(xW ) can be expressed i
terms of the forward driftbW (xW )5FW (xW )/mb as follows:

V5
FW 2

2m2b2 1
D

mb
¹W •FW . ~11!
he
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Let us emphasize that it is the diffusion~Smoluchowski!
approximation@9,15# which makes the right-hand side of Eq
~10! substantially different from the usual moment equatio
appropriate for the Brownian motion@15#. In particular, the
forceFW presumed to act upon an individual particle does
give rise in Eq.~10! to the expression2(1/m)¹W V which
might be expected on the basis of kinetic theory intuitio
and moment identities directly derivable from the Karme
equation, but to the term1¹W V, cf. Eq. ~11!.

Moreover, instead of the standard pressure term, there
pears a contribution from a probability densityr-dependent
potentialQ(xW ,t). It is given in terms of the so-called osmot
velocity field uW (xW ,t) ~cf. @2#!,

Q~xW ,t !5
1

2
uW 21D¹W •uW ,

~12!

uW ~xW ,t !5D¹W ln r~xW ,t !,

and is generic to a local momentum conservation law
spected by isothermal Markovian diffusion processes,
@2,11,12,19#. Notice that in the case of the free Brownia
motion ~admitted, if we setV50), we would havevW (xW ,t)
52uW (xW ,t) for all times.

An equivalent form of the potential ~12!: Q
52D2Dr1/2/r1/2 induces rather obvious quantum mecha
cal associations~the de Broglie–Bohm ‘‘quantum potential’
with the opposite sign, modulo an adjustment of constan!
@21#. In the context of the Brownian motion, this ‘‘quantum
potential’’ has been deduced in earlier investigations of lo
conservation laws@20#.

Remark 5.Let us note that by demandingQ5V identi-
cally for all xW ,t, we would reduce Eq.~10! to ] tvW

1(vW •¹W )vW 50. Despite its classical-looking Riemann equ
tion form, this conservation law still refers to a diffusio
process. Namely, in view of Eq.~11!, we must identify for-
ward drifts with osmotic velocity fields andD¹W ln r(xW )
5FW /mb holds true. The related diffusion process is statio
ary and preserves the probability measure (r is now time
independent!. See@22# for more general considerations o
that issue.

As repeatedly stated before, Smoluchowski drifts refer
mean motions relative to the bath at rest, and there is
place for any flows intrinsic to the random medium in th
formalism. On the other hand, it is of fundamental impo
tance to understand how genuine flows in a random med
may be generated and what their effect on dispersion wo
be @12#. ~Solutions of the incompressible Navier-Stok
equation may serve as a common-sense model of the flo
a bath, and the diffusion enhancement is known to be rela
to various turbulent motion scenarios.!

To analyze random perturbations that are either supe
posed upon or are intrinsic to a driving deterministic motio
a configuration space equationxẆ5wW (xW ,t) is normally in-
voked, which is next replaced by a formal infinitesimal re
resentation of an Itoˆ diffusion process

dXW ~ t !5bW „XW ~ t !,t…dt1A2DdWW ~ t ! ~13!
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patterned after Eq.~7!. The tacit assumption~basically
wrong @23#! is thatbW does not substantially differ fromwW .

It is useful to exploit a standard phase-space argum
that is valid, under isothermal conditions, for a Markovi
diffusion process taking place in~or relative to! a flow
wW (xW ,t) with as yet unspecified dynamics and concrete ph
cal origin. We account for an explicit force~here, accelera-
tion KW 5FW /m) exerted upon diffusing particles, while no
directly affecting the driving flow itself. Namely@10,2#, let
us set for infinitesimal increments of phase-space rand
variables

dXW ~ t !5VW ~ t !dt,
~14!

dVW ~ t !5b@wW ~xW ,t !2VW ~ t !#dt1KW ~xW !dt1bA2DdWW ~ t !.

Following the leading idea of the Smoluchowski appro
mation, we assume thatb is large, and consider the proce
on time scales significantly exceedingb21 ~that is normally
achieved by takingb to be very large, cf. the infinite friction
limit procedure!. Then, an appropriate choice of the veloc
field wW (xW ,t) may in principle guarantee@2# the convergence
of the spatial partXW (t) of the process to the Itoˆ diffusion
process with infinitesimal increments:

dXW ~ t !5S wW ~xW ,t !1
1

b
KW Ddt1A2DdWW ~ t !. ~15!

Consequently, the forward drift of the process would re
bW (xW ,t)5wW (xW ,t)1(1/b)KW (xW ). Notice that theb21KW contri-
bution can be safely ignored if we are interested in the do
nant driving motion.

Throughout the paper we are interested in Markovian
fusion processes, which propagate, respectively, the ph
space or configuration space probability densities~weak so-
lutions of stochastic differential equations are thus involve!.
In the configuration space variant corresponding to Eqs.~13!,
~15!, we deal with a stochastic process whose probab
density r(xW ,t) evolves according to the standard Fokke
Planck equation

] tr5DDr2¹W •~bW r!, ~16!

which is supplemented by the momentum conservation
~in the mean! of the form ~10! for vW 5bW 2D¹W r/r. If we
compare Eq.~15! with Eq. ~7!, we realize that the transfor
mation of drifts has been executed. Under suitable res
tions, we can relate probability measures correspondin
those equations by means of the Cameron-Martin-Girsa
theory of measure transformations. The Radon-Nikodym
rivative of measures is here involved and for suitable f
ward drifts that are gradient fields it yields@12# the most
general form of an auxiliary potentialV(xW ,t) that is allowed
to appear in Eq.~10!:

V~xW ,t !52DF ] tf1
1

2
S bW 2

2D
1¹W •bW D G . ~17!

HerebW (xW ,t)52D¹W f(xW ,t).
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Equations~17! and ~11! are trivial identities, if we take
for granted that all drifts are known from the beginning, as
the case of typical Smoluchowski diffusions where the ext
nal forceFW is a priori postulated. We can proceed otherwi
and, on the contrary, one can depart from a suitably cho
space-time-dependent functionV(xW ,t). Then Eq.~16! should
be considered as a nonlinear~Riccatti-type! equation which
is to be solved with respect to the drift field potentialF(xW ,t).
Such a solution, when inserted in the Fokker-Planck equa
~16!, would ultimately yield an evolution of an initial prob
ability densityr(xW ,0).

From this point of view, while developing the formalism
one should decide what is a quantity ofprimary physical
interest: the field of driftsbW (xW ,t) or the potentialV(xW ,t).
They are not independent quantities, and enter the discus
as entangled objects. Mathematical features of the forma
appear to depend crucially on the properties~such as conti-
nuity, local and global boundedness, Rellich class! of the
potentialV; see, e.g.,@12#.

If we decide that the momentum conservation law is go
erned by a continuous functionV(xW ,t) bounded from below
~cf. @12#!, then it seems worthwhile to mention a close co
nection of the considered framework with the general the
of small random perturbations of the classical Hamilto
Jacobi dynamics@19#. An assumption that the forward drif
is defined in terms of a gradient of a suitable function allo
us to rewrite the formula~17! in a form clearly reminiscent
of the Hamilton-Jacobi equation@we setF52Df in Eq.
~17! and takeF(xW ,0) as the initial data for thet>0 evolu-
tion#:

V5] tF1
1

2
u¹W Fu21DDF. ~18!

An associated function~known as the so-called backwar
drift of a Markovian diffusion process! bW * 5bW 22uW , cf. Eq.
~11!, if denotedbW * 5¹W F* is known to yield another modi-
fied Hamilton-Jacobi equation@12,19#:

V5] tF* 1
1

2
u¹W F* u22DDF* ~19!

to be solved with given terminal dataF* (xW ,T) for times 0
<t<T.

Equation ~19! is identifiable as the so-called Hamilton
Jacobi-Bellmann programming equation in the optimal co
trol of stochastic diffusion processes@19#. A related issue of
viscosity solutions of the standard Hamilton-Jacobi equat
has been extensively studied in the literature as theD↓0
limit of solutions of the modified~e.g., Bellmann! equation.
A direct connection~via the logarithmic Hopf-Cole transfor
mation! of Eq. ~19! with the forced Burgers equation and th
generalized heat equation~hence, with the related Feynman
Kac potentials, semigroups and kernels! is well known
@12,19,23#.

It is, however, more interesting to observe that a gradi
field ansatz for the diffusion current velocity (vW 5¹W S),

] tr52¹W •@~¹W S!r#, ~20!
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allows us to transform the momentum conservation law~10!
of a Markovian diffusion process to the universal Hamilto
Jacobi form:

V5] tS1
1

2
u¹W Su21Q, ~21!

whereQ(xW ,t) was defined before in Eq.~12!. By applying
the gradient operation to Eq.~20! we recover Eq.~10!. Note
that Eq.~20! is sensitive to any additive~constant or time-
dependent! modification of the potentialV. In the above, the
contribution due toQ is a direct consequence of an initi
probability measure choice for the diffusion process, wh
V via Eq.~17! alone does account for an appropriate forwa
drift of the process.

The derivation of a hierarchy of local conservation la
~moment equations! for the Kramers equation can be pa
terned after the standard procedure for the Boltzmann e
tion @6,9,15#. Those laws do not form a closed system a
additional specifications~such as the familiar thermodynam
cal equation of state! are needed to that end. In the case
the isothermal Brownian motion, when considered in
large friction regime~e.g., Smoluchowski diffusion approxi
mation!, the Fokker-Planck equation must be supplemen
by one conservation lawonly to yield a closed system. Suc
a system uniquely determines the stochastic process.

That happens under a definite choice of external forc
and hence Smoluchowski drifts. If the drifts are nota priori
specified, then the only freedom left in the momentum c
servation law amounts to the choice of a concrete functio
form for the potentialV(xW ,t). In the theory of Brownian
motion this particular decision making replaces the stand
equation of state constraint, suitable for the kinetic the
description of gases and liquids.

In view of more sensitive dependence on the potential
hence more detailed discrimination between distinct dyna
ics scenarios, we adopt the Hamilton-Jacobi equation~21! as
a generic substitute of the momentum conservation law~10!.
Thus we can consider a closed system which is compose
the continuity equation] tr52¹W (vW r) @this, in view of vW

5bW 2D¹W r/r, is equivalent to the Fokker-Planck equatio
~16!# and the Hamilton-Jacobi equation~21!, plus suitable
initial ~and/or boundary! data. Alternatively, we can supple
ment the Fokker-Planck equation~16! with the nonlinear
Riccatti-type equation~17! to form a closed system of partia
differential equations, provided the functional form ofV is
preselected. In contrast to the pair~16!,~21! where r(xW ,t)
enters an entangled relationship, the pair~16!,~17! is not en-
tangled.

We need to stress that it is the closed system of Eqs.~20!
and ~21! which directly refers to physically motivated loca
conservations laws~moment equations! associated with the
Brownian motion@20,15,12#, and to the respective diffusio
currents. The underlying Markovian diffusion process is th
specifieduniquely@that will not be the case if Eq.~10! has
been used instead of Eq.~21!#. However, Eqs.~20! and~21!
form a coupled nonlinear system, whose analytic soluti
are not readily accessible. It is therefore useful to know t
a linearization of this formidable nonlinear problem is pro
vided by a time-adjoint pair of generalized diffusion equ
-
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tions ~cf. the Appendix! in the framework of the Schro¨dinger
boundary-data problem. The standard heat equation app
as a very special case in this formalism.

III. THE THIRD NEWTON LAW IN THE MEAN

A. Free Brownian motion in terms of local conservation laws

The local conservation law~10! acquires a direct physica
meaning~the rate of change of momentum carried by a v
ume locally comoving with the flow@12#! only if averaged
with respect tor(xW ,t) over a simply connected spatial are
Namely, if V stands for a volume enclosed by a tw
dimensional outward oriented surface]V, we define a co-
moving volume on small time scales, by deforming t
boundary surface in accordance with the local current ve
ity field values. Namely, we consider at timet the displace-
ment of the boundary surface]V(t) defined as follows:xW

P]V→xW1vW (xW ,t)Dt for all xWP]V. Up to the first order in
Dt this guarantees the conservation of mass~probability
measure! contained in V at time t, i.e., *V(t1Dt)r(xW ,t
1Dt)d3x2*V(t)r(xW ,t)d3x;0.

The corresponding~to the leading order inDt) quantita-
tive momentum rate-of-change measure reads, cf.@12#,
*Vr¹W (V2Q)d3x. In view of ] iQ5(1/r)( j] j Pi j , where
the stress tensorPi j 5D2r] i] j ln r is determined up to an
additive time-dependent or constant term, the standard di
gence theorem allows us to isolate an explicit surface~due to
stresses or of the pressure-type! contribution. Namely, it
holds that2*Vr] iQd3x52*]V( j Pi j dsW j , with dsW being
an infinitesimal area element of]V in R3.

For a particular case of the free Brownian expansion

r0~xW !5
1

~pa2!3/2expS 2
xW2

a2D→r~xW ,t !

5
1

@4pD~ t1t0!#3/2expS 2
xW2

4D~ t1t0!
D , ~22!

wherea254Dt0 and t0.0,t>0, we would have

Pi j ~xW ,t !5P~xW ,t !d i j 52
D

2~ t1t0!
r~xW ,t !d i j ~23!

for all xWPR3 and t>0. Hered i j stands for the Kronecke
symbol. Then,2*Vr¹W Qd3x52*]VPdsW , where

Q~xW ,t !5
xW2

8~ t1t0!2 2
3D

2~ t1t0!
. ~24!

The current velocityvW (xW ,t)5¹W S(xW ,t)5xW /2(t1t0), apart
from solving ] tr52¹W •(vW r) and ] tvW 1(vW •¹W )vW 52¹W Q

with r0 andvW 052uW 0 standing for initial data, is also linked
to the Hamilton-Jacobi equation

] tS1
1

2
u¹W Su21Q50 ~25!

whose solution is S(xW ,t)5xW2/4(t1t0)1 3
2 D ln@4pD(t

1t0)#.
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Let us observe that the initial datavW 052D¹W ln r05

2uW 0 for the current velocity field indicate that we have t
tally ignored a crucialpreliminary stage of the dynamics o
the b21 time scale, when the Brownian expansion of
initially static ensemble has been ignited and so partic
have been ultimately set in motion.

Notice also that our ‘‘osmotic expansion pressur
P(xW ,t) is not positive definite, in contrast to the familia
kinetic theory~equation of state! expression for the pressur
P(xW )5arb(xW ),a.0 appropriate for gases. The admissib
ity of the negative sign of the ‘‘pressure’’ function encod
the fact that the Brownian evolving concentration of partic
generically decompresses~blows up!, instead of being com-
pressed by the surrounding medium. The compression~pres-
sure upon the control volume coming from its surroundin!
is the standard feature in the kinetic theory of gases, ex
for the cavitation phenomenon in liquids and the exo
blow-up conditions in the concentrations of dense hot mat

The loss~in view of the ‘‘osmotic’’ migration! of momen-
tum stored in a control volume at a given time, may
interpreted here in terms of an acceleration2*Vr¹W Qd3x
induced by afictitious ‘‘attractive force.’’ By invoking an
explicit Hamilton-Jacobi connection~21!, we may attribute
to a diffusing Brownian ensemble floating through a~locally
co-moving! control volumeV the mean kinetic energy pe

unit of mass*Vr 1
2 vW 2d3x. We can also evaluate the mea

total kinetic energy per unit of mass obtained after extend
integrations fromV to R3.

For the considered example, in view of^xW2&56D(t

1t0), we have*R3r 1
2 vW 2d3x53D/4(t1t0). Note that the

mean energy*Vr( 1
2 vW 21Q)d3x does not have to be positive

Indeed, this expression identically vanishes after extend
integrations fromV to R3. On the other hand, the kineti

contribution, initially equal to*R3
1
2 rv2d3x53D/a2 and evi-

dently coming from nowhere, continually diminishes and
bound to disappear in the asymptotict→` limit, when
Brownian particles become uniformly distributed in space

B. The third Newton law in the mean
and the Brownian recoil principle

Normally, diffusion processes yielding a nontrivial matt
transport~diffusion currents! are observed for a nonuniform
concentration of colloidal particles. We can devise a thou
~numerical! experiment that gives rise to a correspondi
transport in terms of an ensemble of sample Brownian m
tion realizations on a fixed finite time interval, instead
considering a multitude of them~migrating swarm of Brown-
ian particles! simultaneously. One may surely implant pa
ticles at initial ~random! space locations to mimic a certa
probability density and next release~individually in each
sample experiment! and allow them to execute their Brown
ian paths independently, in a fixed duration time interval.
terms of such a particle ensemble, we can safely return to
previous colloidal diffusion picture where migrating Brow
ian particles are also regarded as independent~and so are
their individual Brownian motions!.

Consequently, in both visualizations, after the relaxat
time b21, the diffusion current is initiated ‘‘at the expense
s

’
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-
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of the bath. A nonzero mean kinetic energy must have b
initially transferred~pumped! from the bath to the diffusing
~blowing up, expanding! swarm of particles. This energy i
being returned to the bath only asymptotically.

Recalling our previous discussion, for a sufficiently fa
diffusion process, all that should correspond to a local co
ing of the bath and implement a tiny deviation from its the
mal equilibrium conditions in each single-particle propag
tion ~simulation! experiment. Accordingly, the tendency t
regain the local thermal equilibrium by the bath~reflecting
an attraction of tagged particles by the cooler areas! must
result in induced local flows—they can become identifia
only on the ensemble average. All that is to happennot lit-
erally on theb21 relaxation time scale but on~still relatively
small! time scaleDt of the diffusion process which is wel
below the observational one.

To each executed sample path there corresponds a sa
realization of the random medium~pushed slightly away
from its thermal equilibrium, in view of the postulated fee
back mechanism!. Those random~sample! realizations of the
bath should be ensemble averaged as well to yield an ‘
fective’’ bath in thermal equlibrium, which is, however, n
longer in a statistical state of rest. The emergent driv
flows mimic, on the average, the ‘‘return to equilibrium’’ o
the bath in each sample propagation experiment. The the
conditions are maintained on the ensemble average, so
the effectiveprocess guiding theensembledynamics can be
viewed as isothermal.

We recall close links of this scenario with an idea of
random walk in a random medium@18#. However, presently
a disorder in the random medium is coupled to the rando
ness of the walk and is no longer of independent origin.

Let us assume that ‘‘an effort’’~hence, an energy loss! of
the random medium, on theb21 scale, to produce a loca
Brownian diffusion currentvW (xW ,t0) out of the initially static
ensemble and thus to decompress~lower the blow-up ten-
dency! an initial nonuniform probability distribution, result
in the effective osmotic reactionof the random medium.
Whatever is being transported away~on the ensemble aver
age! according to the Fick law is assumed to induce a co
pensating osmotic counterflow in theeffective thermal bath.
That is the Brownian recoil effect of Ref.@11#.

Now, the particle swarm propagation scenario becom
entirely different from the standard one, Eqs.~10!, ~20!. First
of all, the nonvanishing forward driftbW 5uW is generated as a
dynamical~effective, statistical here! response of the bath to
the enforced by the bath particle transport with the lo
velocity vW 52uW . Second, we need to account for a paral
inversion of the pressure effects~compression1¹W Q should
replace the decompression2¹W Q) in the respective local mo
mentum conservation law.

Those features can be secured through an explicit rea
tion of the action-reaction principle~‘‘the Brownian recoil’’
effect, cf. Ref.@11#!, which we promote to the status of th
third Newton law in the mean.

On the level of Eq.~10!, once averaged over a finite vo
ume, we interpret the momentum per unit of mass rate
change*Vr¹W (V2Q)d3x which occurs exclusively due to
the Brownian expansion, to generate a counterbalancing r
of-change tendency in the random medium. To account
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the emerging forward drift and an obvious modification
the subsequent dynamics of an ensemble of~tagged! par-
ticles, we redefine Eq.~10! by setting2*Vr¹W (V2Q)d3x in
its right-hand side instead of1*Vr¹W (V2Q)d3x. That
amounts to an instantaneous realization of the third New
law in the mean~action-reaction principle!. Hence, the mo-
mentum conservation law for the processwith a recoil ~the
reaction term replaces the decompressive ‘‘action’’ ter!
would read

] tvW 1~vW •¹W !vW 5¹W ~Q2V!, ~26!

implying that

] tS1
1

2
u¹W Su22Q52V ~27!

stands for the corresponding Hamilton-Jacobi equation,
@19,24#, instead of Eq.~21!. Here, a suitable adjustment~re-
setting! of the initial data is necessary, which we shall e
plain below~see Sec. III C!.

Here we present the main principles of Brownian moti
with a recoil.

In the coarse-grained picture of motion we shall deal w
a sequence of repeatable scenarios realized on the Sm
chowski process time scaleDt: the Brownian swarm expan
sion buildup is accompanied by the parallel counterfl
buildup, which in turn modifies the subsequent stage of
Brownian swarm migration~being interpreted to modify the
forward drift of the process! and the corresponding built-up
anew counterflow.

Although the new closed system of partial different
equations~20! and ~27! is very different from the previous
one ~20!,~21!, it nonetheless describes Markovian diffusio
type processes again@2,12,25#. The link is particularly obvi-
ous if we observe that the new Hamilton-Jacobi equat
~27! can be formally rewritten in the previous form~21! by
introducing

V r5] tS1
1

2
u¹W Su21Q,

~28!
V r52Q2V,

whereV represents the previously defined potential funct
of any Smoluchowski~or more general! diffusion process,
Eq. ~11!. It is V r which via Eq.~17! would determine for-
ward drifts of the Markovian diffusion process with a reco
They must obey the Cameron-Martin-Girsanov identity

V r52Q2V52DF ] tf1
1

2
S bW 2

2D
1¹W •bW D G . ~29!

Our system of equations~20!,~27! is badly nonlinear and
coupled, but its linearization can be immediately given
terms of an adjoint pair of Schro¨dinger equations with a
potentialV @2,19#. Indeed,

i ] tc52DDc1
V

2D
c, ~30!
f

n

f.

-

lu-

e

l

n

n

with a solution

c5r1/2exp~ iS! ~31!

and its complex adjoint does the job, if we regardr together
with S to remain in conformity with the previous notations
Eqs.~20!,~27!. The choice ofc(xW ,0) gives rise to a solvable
Cauchy problem. We shall exploit this feature later. Not
that, in view of Eq.~30!, for time-indepedentV, the total
energy*R3(v2/22Q1V)rd3x of the diffusing ensemble is
a conserved quantity.

The problem~20!,~27!,~28! can be reformulated as th
Schrödinger boundary-data problem~cf. the Appendix!, but
the resulting generalized diffusion equations are nonlinea
coupled ~by means of the potentialV r replacing the
Feynman-Kac potentialV. Hence the previous linearizatio
needs to be exploited anyway. The general existence crit
for Markovian diffusion processes of that kind were form
lated in Ref.@25#; see also@19,12# and the Appendix.

C. Brownian motion with a recoil as an anomalous
„enhanced… diffusion model

For the sake of clarity of discussion, we shall confine o
considerations to one-dimensional problems. In the abse
of external forces, we may consider a solution of equatio
~in space dimension one! ] tr52¹(vr) and] tv1(v¹)v5
1¹Q, where an initial probability densityr0(x) is chosen in
correspondence with the previous free Brownian motion
ample. We denotea254Dt0 . Then,

r~x,t !5
a

@p~a414D2t2!#1/2expS 2
x2a2

a41D2t2D ~32!

and

b~x,t !5v~x,t !1u~x,t !5
2D~a222Dt !x

a414D2t2 ~33!

are the pertinent solutions. Notice thatu(x,0)522Dx/a2

5b(x,0) amounts tov(x,0)50, while in the previous free
Brownian case the initial current velocity was equal t
2D¹ ln r0 . This readjustment of the initial data can be i
terpreted in terms of the counterbalancing~recoil! phenom-
enon: the would-be initial Brownian ensemble current velo
ity v052u0 is here completely saturated by the emergi
forward drift b05u0 , see, e.g., also@11#. This implies
u(x,t)522Da2x/(a414D2t2) and v(x,t)54D2xt/(a4

14D2t2). Note that ¹Q5xa4/4(a41D2t2), to be com-
pared with the respective expression2¹Q52D2x/(a2

14Dt) in the preceding section. Presently, we deal with
fictitious ‘‘repulsive’’ force, which corresponds to the com
pression~pressure upon! of the Brownian ensemble due t
the counter-reaction of the surrounding medium.

We can write things more explicitly. Namely, now

Q~x,t !5
2D2a2

a414D2t2S a2x2

a414D2t2 21D ~34!

and the corresponding pressure term@¹Q5(1/r)¹P# reads
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P~x,t !52
2D2a2

a414D2t2r~x,t ! ~35!

giving a positive contribution1¹Q to the local conservation
law ~26!.

The related Hamilton-Jacobi equation

] tS1
1

2
u¹Su251Q ~36!

is solved by

S~x,t !5
2D2x2t

a414D2t2 2D arctanS 2
2Dt

a2 D ~37!

With the above form ofQ(x,t) one can readily check tha
Eqs. ~28! are identically satisfied, and that the Camero
Martin-Girsanov constraint equation for the forward drift
the Markovian diffusion process with a recoil is automa
cally valid for f5 1

2 ln r1S:

2Q52DF] tf1
1

2S b2

2D
1¹•bD G , ~38!

cf. the general identity~29!.
In anology with our free Brownian motion discussion, l

us observe that presently

^x2&5
a2

2
1

2D2t2

a2
. ~39!

It is easy to demonstrate@use a linearization~30!,~31! of
the problem# that the quadratic dependence on time pers
for arbitrarily shaped initial choices of the probability distr
bution r0(x).0. That signals an anomalous behavior~en-
hanced diffusion! of the pertinent Markovian process whe
V50, i.e.,V r52Q.

We can evaluate the kinetic energy contribution

E
R
r

v2

2
dx5

4D4t2

a2~a414D2t2!
, ~40!

which in contrast to the Brownian case shows a contin
growth up to the terminal~asymptotic! value D2/a2. This
value was in turn an initial kinetic contribution in the prev
ous Brownian example. In contrast to that case, the t
energy integral is now finite~finite energy diffusions of Ref.
@25#! and reads

E
R
S 1

2
v22QD rdx5

D2

a2 ~41!

for all times~it is a conservation law!. The asymptotic value
of the current velocityv;x/t is twice larger than this appro
priate for the Brownian motion,v;x/2t.

D. Response to an external force: nondispersive
diffusion-type processes

Let us regardFW (xW )52¹W V(xW ) as an external force field
whose effects on the dynamics of Brownian particles
-

ts

l

al

e

encoded in the Smoluchowski diffusion process equati
~7!,~9!, and then~9!–~11!. Those in turn can be motivated b
invoking the Kramers equation~14! and its Smoluchowski
diffusion approximation~15!.

As emphasized before, on the level of local conservat
laws, in the diffusion approximation, the microscopic for
FW is represented by the~Feynman-Kac! potentialV, defined
through the Girsanov formula~11!.

Let us adapt the third Newton law in the mean and
related Brownian recoil strategy~26!–~29! to this case. Evi-
dently, the potentialV will explicitly appear in the lineariza-
tion ~30! of the problem. On the other hand, it is the potent
V r52Q2V which via Eq. ~29! determines forward drifts
appropriate for the diffusion process with a recoil. In view
the inherent nonlinearity of the problem, one should not
pect that the emergent drifts would allow for the simple d
composition met in Eqs.~14!,~15!.

Our further discussion will be carried out in one spa
dimension and will focus on quadratic potentials.

For a parabolic ~harmonic oscillator! potential V(x)
5 1

2 mv2x2 defining the accelerationK(x)52v2x, the cor-
responding Feynman-Kac potential~11! reads V(x)
5 1

2 g2x22Dg,g5v2/b. It is useful to mention that the
choice of the repulsive potentialV(x)51 1

2 mv2x2 would
yield an innocent-looking modification by a constant in t
function ~17!: V(x)5 1

2 g2x21Dg. That demonstrates a
extraordinary sensitivity of the Riccatti-type equations~11!
and ~17! to the choice ofV.

In fact, a suitable additive modification of12 g2x2 by a
constant allows us to generate@by directly solving the
Riccatti-type equation~11!# the whole family of forward
drifts pertaining to inequivalent stationary diffusion pro-
cesses, cf.@12#. Nonetheless, all of them correspond to t
same¹V51g2x generic contribution to the local momen
tum conservation law~10!. Clearly, the law~10! does not
provide a sufficiently fine discrimination between admissib
stochastic motion scenarios, unless we know the Sm
chowski force and its potential from the beginning. It is on
the Hamilton-Jacobi equation level, where the closed sys
of partial differential equations@respectively, Eqs.~20!,~21!,
or Eqs.~20!,~27!# determines the process uniquely.

It is clear that stationary processesare the samein the
case of both the standard Brownian motion and the Brown
motion with a recoil. The respective propagation scenar
substantially differ in the nonstationary case only.

To exemplify the above statement~we have discussed be
fore theV50 case!, let us consider an explicit solution o
Eqs. ~20! and ~28! in the case ofV(x)5 1

2 g2x22Dg. By
means of the linearization~30!,~31!, this can be easily ac
complished, cf.@24#. We shall utilize exactly the same inita
probability densityr0(x) as before. We have

r~x,t !5S ga2

p@sin2~Ag2Dt !1ga4 cos2~Ag2Dt !# D
1/2

3expS 2
ga2x2

sin2~Ag2Dt !1ga4 cos2~Ag2Dt ! D
~42!

and
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S~x,t !52
D~g!3/2a4x2tg~Ag2Dt !

tan2~Ag2Dt1ga4!sin~Ag2Dt !
1

DAgx2

tan~Ag2Dt !

1D arctanS 2
tan~Ag2Dt !

Aga2 D 2Dgt. ~43!

The forward drift of the corresponding diffusion-type pr
cess reads

b~x,t !5
~12ga2!Ag sin~Ag4Dt !22ga2

sin2~Ag2Dt !1ga4 cos2~Ag2Dt !
Dx ~44!

and X(t)5x holds true in terms of the random variable
the process. The additive decomposition of the drift, valid
Eqs.~9!,~15!, is completely destroyed by the Brownian reco
scenario. Notice thatb(x,0)522Dx/a25u(x,0), while @cf.
Eq. ~9!# b5F/mb52gx would hold true for all times, in
the case of the standard Smoluchowski diffusion process

Because of the harmonic attraction and suitable ini
probability measure choice, we have here wiped out all p
viously discussed enhanced diffusion features. Now, the
persion is attenuated and actually the nondispers
diffusion-type process is realized:^x2& does not spread at a
despite the intrinsically stochastic nature of the dynam
~finite-energy diffusions of Ref.@25#!.

IV. OUTLOOK

The main objective of this paper was to investigate
very foundations~phenomenology and the traditional theo
dating back to Langevin and Kramers! of Brownian motion
and related diffusion-type processes. Our ultimate goal
to set up the limits of validity of the isothermal scenario f
the Smoluchowski diffusion processes and to determ
whether one can go well beyond the class of phenomena
which this theory is regarded to be perfectly working.

Mathematical tools of the kinetic theory~based on exploi-
tation of the Boltzmann equation! are insufficient for a
deeper analysis of diffusion phenomena in the Smo
chowski approximation, including an issue of the respons
external forces. Some basic principles of the kinetic theo
such as the microscopic energy-momentum conserva
laws, are no longer valid in the diffusion process approxim
tion of the Boltzmann or Kramers equations. In particul
the standard theory does not account for generic pertu
tions of the noise carrier~random medium in which a tagge
particle is immersed!, due to the fact that the Brownian mo
tion is initiated and maintainedexclusively by the medium
Also, work performedby the medium upon a diffusing par
ticle is generally out of sight in typical discussions of t
Brownian motion. We have discussed rather obvious pr
lems with the notion of thermal equilibrium~Sec. I!.

Obviously, weakly out-of-equilibrium systems mu
propagate heat currents, but their effect on the Brown
particle dynamics is negligible, if merely an individual pa
ticle motion is addressed. One needs a theory of Brown
particle ensembles to account for environmental~recoil! ef-
fects due to locally induced heat flows. In the case of we
perturbations of the medium, the notions of aneffectivetem-
l
-

s-
e

s

e

s

e
or

-
to
,
n
-
,
a-

-

n

n

k

perature,effective thermal equilibrium, and effectively iso-
thermal regime may be introduced only after taking an
semble average.

This conceptual input shares common points with
mathematical theory ofrandom motions in random medi
but urgently needs development along the new lines outli
in the present paper~cf. Sec. I D!.

That was the starting point for considerations of Sec.
where local conservation laws for the Brownian motion
the Smoluchowski approximation were cast in the form
the closed system of partial differential equations, comp
ing the continuity and the Hamilton-Jacobi equations. T
latter captures all relevant features of the energy balanc
the diffusing system, in terms of local~mean! velocity fields
supplemented by external forces and pressure terms~intrinsic
to a particle ensemble andnot to the medium!.

A consequent exploitation of the Hamilton-Jacobi equ
tion and a deepened analysis of the local momentum con
vation law for a statistical ensemble of diffusing particles l
us to a formulation of the third Newton law for mean velo
ity fields as the environmental reaction to the mediu
induced Brownian motion. It provides a novel, consiste
version of the tentatively introduced notion of theBrownian
recoil principle@11#, meant to account for environmental re
coil effects ~‘‘perturbations of noise’’! in the course of the
Brownian particle propagation.

We have analyzed~Sec. III! examples of related
diffusion-type processes in some detail, to indicate t
anomalous~here, enhanced! diffusion processes naturall
arise in this framework. The general theory of the respo
of a diffusing ensemble to external forces was formulated
terms of Feynman-Kac kernels, in the framework of the
called Schro¨dinger boundary-data problem~cf. the Appen-
dix!. Under suitable external forcing, diffusion process
with a recoil may become nondispersive. Other, most
usual anomalies can be associated with diffusing particles
proper tuning of external forces.
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APPENDIX: RECONSTRUCTION OF A MARKOVIAN
DIFFUSION PROCESS FROM THE INPUT-OUTPUT

STATISTICS DATA

There are many procedures to reproduce the intrinsic
namics of a physical system from observable data, such
e.g., time series analysis. We shall outline an algorithm
lowing us to reconstruct themost likelymicroscopic motion
scenario under an additional assumption that the sought
dynamics actuallyis a Markovian diffusion process. Thi
reconstruction method is based on solving the so-ca
Schrödinger boundary-data and interpolation proble
@19,12,23#.

Given two strictly positive~usually on an open space in
terval! boundary probability densitiesr0(xW ),rT(xW ) for a pro-
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cess with the time of durationT>0, one can single out a
unique Markovian diffusion process which is specified
solving the Schro¨dinger boundary-data problem:

mT~A,B!5E
A
d3xE

B
d3ymT~xW ,yW !,

E d3ymT~xW ,yW !5r0~xW !,

E d3xmT~xW ,yW !5rT~y!,

where the joint probability distribution has a density

mT~xW ,yW !5u0~xW !k~x,0,y,T!vT~yW !0

and the two unknown functionsu0(xW ),vT(yW ) come out as
~unique! solutions, ofthe same sign, of the integral identities.
To this end, we need to have at our disposal a continu
bounded strictly positive~ways to relax this assumption ar
known! function k(xW ,s,yW ,t),0<s,t<T, which for our pur-
poses~an obvious way to secure the Markov property! is
chosen to be represented by familiar Feynman-Kac inte
kernels of contractive dynamical semigroup operators:

k~yW ,s,xW ,t !5E expF2E
s

t

c„vW ~t!,t…dtGdm
~xW ,t !
~yW ,s!

~v!.

In the above,dm (xW ,t)
(yW ,s)(v) is the conditional Wiener measur

over sample paths of the standard Brownian motion.
The pertinent~interpolating! Markovian process can b

ultimately determined by means of positive solutions~it is
desirable to have them bounded! of the adjoint pair of gen-
eralized heat equations:

] tu~xW ,t !5nDu~xW ,t !2c~xW ,t !u~xW ,t !,

] tv~xW ,t !52nDv~xW ,t !1c~xW ,t !v~xW ,t !.

Here, a functionc(xW ,t) is restricted only by the positivity
and continuity demand for the kernel.

Solutions, upon suitable normalization, give rise to t
Markovian diffusion process with thefactorizedprobability
densityr(xW ,t)5u(xW ,t)v(xW ,t) which, while evolving in time,
interpolates between the boundary density datar(xW ,0) and
r(xW ,T). The interpolation admits an Itoˆ realization with the
respective forward and backward drifts defined as follow

bW ~xW ,t !52n
¹W v~xW ,t !

v~xW ,t !
,

bW * ~xW ,t !522n
¹W u~xW ,t !

u~xW ,t !

in the prescribed time interval@0,T#.
For the forward interpolation, the familiar Fokker-Plan

~second Kolmogorov! equation holds true:
us

al

] tr~xW ,t !5nDr~xW ,t !2¹W @bW ~xW ,t !r~xW ,t !#,

with r(xW ,0) given, while for the backward interpolatio
@starting fromr(xW ,T)# we have

] tr~xW ,t !52nDr~xW ,t !2¹W @bW * ~xW ,t !r~xW ,t !#.

The drifts are gradient fields, curlbW 50. As a conse-
quence, those that are allowed by any prescribed choic
the functionc(xW ,t) mustfulfill the compatibility condition

c~xW ,t !5] tF1
1

2S b2

2n
1¹bD ,

which establishes the Girsanov-type connection of the
ward drift bW (xW ,t)52n¹W F(xW ,t) with the Feynman-Kac po-
tential c(xW ,t). In the Schro¨dinger interpolation framework
considered, the forward and backward drift fields are c
nected by the identitybW * 5bW 22n¹W ln r.

For Markovian diffusion processes the notion of theback-

ward transition probability densityp* (yW ,s,xW ,t) can be con-
sistently introduced at each finite time interval, say 0<s,t
<T:

r~xW ,t !p* ~yW ,s,xW ,t !5p~yW ,s,xW ,t !r~yW ,s!

so that *r(yW ,s)p(yW ,s,xW ,t)d3y5r(xW ,t) and r(yW ,s)
5*p* (yW ,s,xW ,t)r(xW ,t)d3x.

The transport~density evolution! equations refer to pro-
cesses running in opposite directions in a fixed period, co
mon for both time durations. The forward one executes
interpolation from the Borel setA to B, while the backward
one executes an interpolation fromB to A.

The knowledge of the Feynman-Kac kernel implies th
the transition probability density of the forward proce
reads

p~yW ,s,xW ,t !5k~yW ,s,xW ,t !
v~xW ,t !

v~yW ,s!
,

while the corresponding transition probability density of t
backward process has the form

p* ~yW ,s,xW ,t !5k~yW ,s,xW ,t !
u~yW ,s!

u~xW ,t !
.

Obviously in the time interval 0<s,t<T it holds that

u~xW ,t !5E u0~yW !k~yW ,s,xW ,t !d3y,

v~yW ,s!5E k~yW ,s,xW ,T!vT~xW !d3x.

Consequently, we have fully determined the underlyi
~Markovian! random motions, forward and backward, r
spectively. All that accounts for perturbations of~and condi-
tioning upon! the Wiener noise.
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Remark 6.Various partial differential equations assoc
ated with Markovian diffusion processes are knownnot to be
invariant under time reversal~hence being dissipative an
linked to irreversible physical phenomena!. However, the
correspoding processes admit astatistical inversion. Let us
consider a process running in a finite time interval, s
@0,T#. We may consistently define a process running ba
s
-

,

r-

-

y
-

ward in time in this interval and reproducing the most like
~statistical! past of the process, given the present probabi
measure data. See, e.g.,@2,11,12,19# and @26#. In fact, see
@27#, p. 255: ‘‘any probabilistic treatment of the heat equ
tion involves a time reversal.’’ This feature is explicitly ut
lized in the analysis of the above-outlined Schro¨dinger
boundary-data and interpolation problem@19,12#.
tt.
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